PowerMaker
  • PowerMaker Document Hub
  • Disclaimer
  • Resources
  • Quick Start
    • FAQ
    • Providing Liquidity
    • Tutorial: Perform a Trade
    • Tutorial: Providing Liquidity
    • Tutorial: Create a Market
  • Concepts
    • Power Perpetuals
      • PPT - Power Perpetual Token
    • Example Use Cases
      • Hedging Uniswap V3
  • Protocol
    • Overview
    • Capped Power Invariant
    • Understanding Returns
    • Security
    • Protocol Participants
    • Smart Contracts
      • Factory
      • Pair
      • ImmutableState
      • JumpRate
      • Lendgine
      • LendgineRouter
      • LiquidityManager
    • Deployed Contracts
  • Discord
  • Twitter
  • Github
Powered by GitBook
On this page
  • PowerMaker1
  • PowerMaker2
  1. Protocol

Capped Power Invariant

PreviousOverviewNextUnderstanding Returns

Last updated 1 year ago

The capped power invariant replicates any power perpetual payoff and was introduced in a research paper called

φ(R1,R2)=R1+p0α−(p1(α−1)+(1−α)αR2)(αα−1)\begin{equation} \varphi(R_{1},R_{2}) = R_{1}+p_{0}^{\alpha}-\left(p_{1}^{\left(\alpha-1\right)}+\frac{\left(1-\alpha\right)}{\alpha}R_{2}\right)^{\left(\frac{\alpha}{\alpha-1}\right)} \end{equation}φ(R1​,R2​)=R1​+p0α​−(p1(α−1)​+α(1−α)​R2​)(α−1α​)​​

PowerMaker1

The capped power-2 invariant is the trading invariant for squared, "Squeeth" exposure.

φ(R1,R2)=R1−(p1−12R2)2\varphi(R_{1}, R_{2}) = R_{1}-\left(p_{1}-\frac{1}{2}R_{2}\right)^{2}φ(R1​,R2​)=R1​−(p1​−21​R2​)2

PowerMaker2

Capped Power-4 Invariant tracks a quartic payoff to the borrower of the LP share.

φ(R1,R2)=R1+p04−(p13+−34R2)43\varphi(R_{1},R_{2}) = R_{1} + p_{0}^{4} - (p_1^{3}+\frac{-3}{4}R_{2})^{\frac{4}{3}}φ(R1​,R2​)=R1​+p04​−(p13​+4−3​R2​)34​
R1−(p13−34R2)43R_{1} - (p_1^{3}-\frac{3}{4}R_{2})^{\frac{4}{3}}R1​−(p13​−43​R2​)34​

Replicating Monotonic Payoffs Without Oracles.